### Arbres de décision

Fabien Torre

Université de Lille

Mercredi 30 septembre 2009

#### Définition : arbre de décision

Arbre binaire, chaque nœud interne porte un test booléen sur un attribut, chaque branche correspond à un résultat du test (vrai ou faux), chaque feuille est étiquetée par une classe.

#### Illustration

Des exemples (des patients), des attributs (Température et Gorge irritée), des classes (malade ou sain).



# Classification et règles

• Permet de classer un nouvel exemple : (37.2,oui),



- peut être traduit en un système de règles :
  - si (Temp < 37.5) et (GorgeIrritée) alors malade
  - si (Temp < 37.5) et non(GorgeIrritée) alors sain
  - si (Temp  $\geq$  37.5) alors malade

### Inférence d'arbres de décision

### Objectif : inférer un arbre de décision à partir d'exemples.

- Répartition de la population de patients dans l'arbre;
- définition d'une méthode d'inférence :

000000000

- comment sélectionner le test à effectuer à un nœud?
- comment décider si un nœud est terminal?
- quelle classe associée à une feuille?

Pour le premier point, il est intéressant de savoir mesurer le degré de mélange d'une population.

# Mélange

Objectif : mesurer le mélange de deux classes  $c_1$  et  $c_2$  dans un ensemble d'exemples A.

- Utiliser les proportions  $p(c_1)$  et  $p(c_2)$  dans A;
- trouver une fonction qui est minimale lorsque  $p(c_1) = 0$  ou  $p(c_2) = 0$ , et maximale lorsque  $p(c_1) = p(c_2) = 0.5$ ;
- fonction de Gini :  $1 p(c_1)^2 p(c_2)^2$ ;
- entropie :  $-p(c_1).log(p(c_1)) p(c_2).log(p(c_2))$ .

### Gain

- Population courante notée p, de n individus;
- un test divise p en deux sous-ensembles :  $p_1$  de taille  $n_1$  et  $p_2$  de taille  $n_2$  ;
- le gain amené par ce test est donné par :

$$\mathsf{M\'elange}(p) - rac{n_1}{n}.\mathsf{M\'elange}(p_1) - rac{n_2}{n}.\mathsf{M\'elange}(p_2)$$

Critère de sélection : choisir le test qui maximise le gain du test.

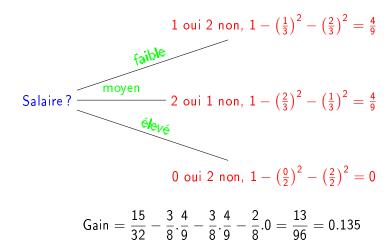
## Un jeu de données

| id | salaire | âge   | résidence | études | internet |
|----|---------|-------|-----------|--------|----------|
| 1  | moyen   | moyen | village   | oui    | oui      |
| 2  | élevé   | moyen | bourg     | non    | non      |
| 3  | faible  | âgé   | bourg     | non    | non      |
| 4  | faible  | moyen | bourg     | oui    | oui      |
| 5  | moyen   | jeune | ville     | oui    | oui      |
| 6  | élevé   | âgé   | ville     | oui    | non      |
| 7  | moyen   | âgé   | ville     | oui    | non      |
| 8  | faible  | moyen | village   | non    | non      |

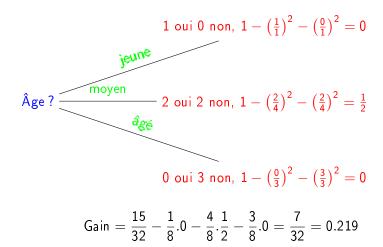
8 clients, 3 ont internet, 5 non, mélange initial (selon Gini) :

$$1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2 = \frac{15}{32} = 0.46875$$

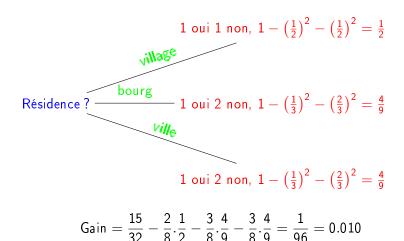
### Tests candidats à la racine : salaire



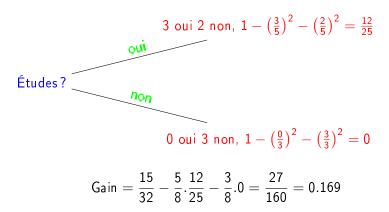
## Tests candidats à la racine : âge



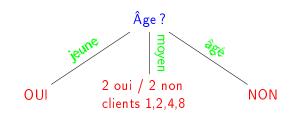
### Tests candidats à la racine : résidence



### Tests candidats à la racine : études

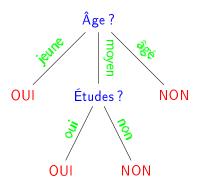


### Premier niveau de l'arbre appris





# Arbre finalement appris



- Algorithme glouton, sans backtrack;
- transposables en règles avec des règles avec attributs communs... en particulier l'attribut utilisé à la racine!
- difficulté avec les concepts disjonctifs (cf. agaricus-lepiota);

000

• faiblesse du codage attributs-valeurs (classification de molécules?).

- Biais de langage : arbres/règles;
- biais de recherche : descendant, ajouter le test qui maximise la diminution du mélange;
- biais de validation : feuille pure.

#### arbres et NFL

Mais le *no free lunch theorem* [Wolpert and Macready, 1995] nous dit que tout biais en vaut un autre... et si l'on inversait le biais de recherche [Murphy and Pazzani, 1994, Webb, 1996]?

### Conclusions sur les arbres de décision

- Critère entropique à chaque nœud : arbre petit, classifieur compréhensible;
- pourrait-on calculer l'arbre le plus petit ?
- division du training set à chaque étape : apprentissage rapide;
- mais rien d'explicite ni de théorique pour minimiser l'erreur en généralisation.
- optimisation possible : élagage de l'arbre appris;
- on peut créer des attributs (loto);
- plusieurs implémentations : ID3, C4.5 [Quinlan, 1993], CART;
- dimension de Vapnik-Chervonenkis?

## Bibliographie I



Exploring the decision forest.

In Computational Learning and Natural Language Workshop, Provincetown, pages 257-275.



C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Webb, G. I. (1996). Further experimental evidence against the utility of occam's razor.

Journal of Artificial Intelligence Research, 4:397-417.

## Bibliographie II



Wolpert, D. H. and Macready, W. G. (1995).

No free lunch theorems for search.

Technical Report SFI-TR-95-02-010, The Santa Fe Institute.