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Abstract—Learning multiple related tasks from data simulta-
neously can improve predictive performance relative to learning
these tasks independently. In this paper we propose a novel
multi-task learning algorithm called MT-Adaboost: it extends Ada
boost algorithm [1] to the multi-task setting; it uses as multi-task
weak classifier a multi-task decision stump. This allows to learn
different dependencies between tasks for different regions of the
learning space. Thus, we relax the conventional hypothesis that
tasks behave similarly in the whole learning space. Moreover,
MT-Adaboost can learn multiple tasks without imposing the
constraint of sharing the same label set and/or examples between
tasks. A theoretical analysis is derived from the analysis of the
original Adaboost. Experiments for multiple tasks over large scale
textual data sets with social context (Enron and Tobacco) give
rise to very promising results.

Keywords-Multi-task learning; Boosting; Decision trees; Tex-
tual and social data.

I. INTRODUCTION

The standard methodology in machine learning is to learn
one task at a time when large problems are broken into
small, reasonably independent sub-problems that are learned
separately and then recombined in a proper way. The multi-
task learning attempts to extend this methodology [2]; its goal
is to improve the performance of related tasks by learning
a model which is able to represent the common knowledge
across tasks.

Previous works on multi-task learning were essentially fo-
cused on neural networks, k-nearest neighbors [2], and support
vector machines [3], [4], where the common knowledge is
explicitly expressed as a shared part of the tasks. Similarly,
probabilistic models have been adapted to the multi-task
setting by introducing shared priors [5], [6].

Most of the existing techniques make some convenience
assumptions, like sharing the same label set and/or examples
between tasks. Moreover, they are often grounded on the
hypothesis that related tasks tend to behave similarly in the
whole learning space.

Unfortunately, dissimilar tasks might hurt the performance
similarly to introducing noise in data and making global
relatedness assumption turns to be too strong in real situations.
Moreover this relatedness may show up different degrees
or even different signs in different regions of the ”learning
space”. It is therefore important that the multi-task learner

determines the relatedness of tasks, learns its different degrees
and accommodates the inductive bias accordingly.

In this paper we promote the multi-task learning using the
boosting principle in order to achieve the above mentioned
goals. It is worth to note that boosting has been already
used in multi-task learning for face verification [7]. Following
the ideas different from ours, it learns a set of boosted
classifiers and is based on a probabilistic model where a
multinomial variable indicates how much each boosted classi-
fier contributes to each task. The learning algorithm involves
Expectation-Maximization (EM) to learn both the multinomial
random variables as well as the classifiers. Dai et al. [8]
developed a variation of AdaBoost [1] that can incorporate
training data from a different distribution than the test set.
Instead of learning multiple models, their approach lowers the
weights of data points (from the other distribution) that are
not representative for the test set.

In this paper we present a novel multi-task learning ap-
proach called MT-Adaboost. It extends Adaboost algorithm [1]
to the multi-task setting. It uses a new multi-task weak
classifier which is a multi-task decision stump (MT-Stump).
An MT-stump has multiple levels. Each level is a decision
stump for one task. Thus an MT-stump defines a partition of
the instance space dependent on the tasks. MT-stumps allow
to learn the relatedness between tasks in different regions of
the instance space. The main contribution of this paper is to
relax the previous constraints on sharing labels/examples and
global relatedness hypothesis.

We first validate our approach on synthetic data sets. Then
we consider two datasets which are large scale textual docu-
ments together with social features (Enron and Tobacco). We
consider different binary tasks and we show that MT-Adaboost
outperforms, for both tasks, state-of-the -art algorithms (SVM
and Adaboost).

The rest of the paper is organized as follows. Our approach
is presented and analyzed in Section II. Then, Section III
explains the experimental settings and reports the evaluation
results. Section IV concludes the paper and presents future
work.



II. MT-ADABOOST

For sake of clarity, we now consider two supervised classifi-
cation tasks T1 and T2 and we postpone the n-tasks case until
the conclusion. Let X be the instance space, the task T1 (and
similarly for T2) is defined as follows. D1 is a distribution
over X , let f1 : X → Y1 be a target function, given a sample
S1 = {(x, f1(x)) | x ∈ X}, find an hypothesis function h1
which minimizes error(h) = Prx∼D1

[h1(x) 6= f1(x)]. We
will consider binary classification tasks.

We propose to learn the tasks simultaneously. We formalize
the multi-task learning problem as follows. We suppose a
distribution D over X × {1, 2}. The intuitive idea is to
choose an instance together with a task. The classification
task we consider is: given a sample S1 ∪ S2, find an hy-
pothesis h : X → Y1 × Y2 which minimizes error(h) =
Pr<x,i>∼D[hi(x) 6= fi(x)], where hi(x) is the i-th compo-
nent of h(x) and i ∈ {1, 2}. The error is a combination of
errors for the two original tasks. The way errors are combined
depends on the distribution D, i.e. on distributions D1 and D2

and how the two tasks are related. Our formalization of multi-
task problems will allow to adapt Adaboost in Section II-B.
But, before, let us present the weak learners we consider.

A. Multi-task Weak Classifiers

We generalize stumps for multi-task problems. Recall that
stumps are one-level decision trees, i.e. a stump is defined by a
test node and two prediction nodes. Thus, they define very ef-
ficient weak classifiers. Moreover, they allow to learn accurate
strong classifiers when used in boosting algorithms [9].

Let us consider the two classification tasks in Figure 1. They
are defined over the same two attributes, but each one has
different label set, and the samples are disjoint. The two tasks
do not seem to be globally related, but in different regions of
the space they show up different signs of strong relatedness.

Thus, we introduce multi-task-stumps (MT-stumps), which
are able to capture the relatedness, even when it differs accross
the different regions of the space. An MT-stump for two tasks
has two levels. The first level is the root and it is a decision
stump for one of the two tasks T1 or T2. The second level is
located at the two prediction nodes of the first level. For each
of the two prediction nodes, it is defined by a decision stump
for the other task. An example of MT-stump, where task T2
is chosen at the root, is shown in Figure 2. We do not give a
formal definition, but it is easy to see that an MT-stump for
two classification tasks over label sets Y1 and Y2 defines a
function h from X into Y1 × Y2. It is worth noting that the
partition of the input space defined by an MT-stump depends
on the two tasks.

B. Formal MT-Adaboost

We consider the multi-task setting as defined above, with
MT-stumps used as weak classifiers. A straightforward adap-
tation of the original Adaboost to multi-task learning leads to
the algorithm MT-Adaboost presented in Figure 3.

One difference from Adaboost is that we consider two
samples S1 and S2 for the two tasks T1 and T2. We suppose

(a) Sample for the first task.

(b) Sample for the second task.

(c) The partition defined by an MT-stump. The first level of the MT-stump
is a decision test for the second task. Its second level contains two decisions
tests for the first task.

Fig. 1. Two tasks resolved by an MT-stump.
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Fig. 2. An MT-stump: a stump for task T2 at the root, two stumps for task
T1, one defined on the set of instances satisfying x ≤ 10, the second one
defined on the set of instances satisfying x > 10. For instance, let us consider
an instance a = (x = 12, y = 11), the MT-stump classifies a as 4 for T1

and 5 for T2.

that the sample Si corresponds to examples drawn according to
a distribution D over X ×{1, 2} with i as second component.
Therefore, we consider, in MT-Adaboost, distributions over
S = S1 ∪ S2.

Another difference is that the error is computed in the multi-
task setting. Indeed, for each t, an hypothesis ht is an MT-
stump, therefore ht is a function from X into Y1 × Y2. We
recall that the true error of ht w.r.t. target functions f1 and f2
has been defined as error(ht) = Pr<x,i>∼D[h

t
i(x) 6= fi(x)],

where hti(x) is the i-th component of ht(x), i ∈ {1, 2}, and
D a distribution over X × {1, 2} . Now, given a distribution
Dt over S = S1 ∪ S2, the (empirical) error is defined as

err(ht, S,Dt) =
∑

e∈S:pred(ht,e) 6=class(e)

Dt(e)

where pred(ht, e) = hti(e) if e ∈ Si and class(e) is the
label of e in Si. The (empirical) error εt = err(ht, S,Dt) is
the sum of the weighted error of the hypothesis ht on the two
sets S1 and S2 w.r.t. Dt.

MT-Adaboost is the original Adaboost adapted to the multi-
task setting. Therefore MT-Adaboost inherits all properties of
the original Adaboost. For instance, we have proved that, for
all D1 over S = S1 ∪ S2, the training error (empirical error
w.r.t. D1) decreases exponentially with the number of boosting
iterations because the training error is at most

exp

(
−2

T∑
t=1

(0.5− εt)2
)

Now, it remains to define a weak learning algorithm for
MT-stumps in the multi-task learning setting, i.e. a learner
that provides hypothesis with error strictly less than 0.5.

C. Weak Learning MT-stumps

Let us consider a distribution D′ over S = S1∪S2, a weak
learning algorithm L must, given as input S and D′, output

Fig. 3. MT-Adaboost
Require: • T the number of boosting iterations,

• S1 and S2 samples for the two tasks, S = S1 ∪ S2

• init initializes the distribution D over S,
• L a weak learner that returns an MT-stump given as

input S and a distribution D over S,
• class returns the label of an example,
• pred with input an MT-stump, returns the label w.r.t.

task i for e ∈ Si,
• err a function that computes the error of a MT-stump

w.r.t. S and a distribution D over S.
1: D1 = init(S) {initialize distribution}
2: for t = 1 to T do
3: ht = L(S,Dt) {train the weak learner}
4: εt = err(ht, S,Dt) {calculate the error}
5: αt = ln( 1−ε

t

εt ) {calculate hypothesis weight}
6: for e ∈ S do {update the distribution}
7: if class(e) = pred(ht, e) then
8: Dt+1(e) = Dt(e). exp(−αt)

Zt

9: else
10: Dt+1(e) = Dt(e). exp(+αt)

Zt

11: end if
12: end for
13: end for
14: return Classifier h(x) = argmax(y1,y2)

∑T
t=1 α

tht(x)

an MT-stump h such that the empirical error err(h, S,D′) is
strictly less than 1

2 .
First, we show that there always exists an MT-stump sat-

isfying this condition. For this, let us consider an MT-stump,
and let us consider the dual MT-stump obtained by inverting
the predicted class at each prediction node of the original MT-
stump. It is easy to show that if an MT-stump has an error ε,
its dual has the error 1− ε. Which means that we can always
find an MT-Stump with error strictly inferior to 1

2 .
So it is possible to define a weak learner, called

Exhaustive-MTS-Learner, as follows: enumerate all
possible MT-stumps and keep the one with the lowest error.
To enumerate all MT-stumps, the learner loops on the two
tasks (each of them can be used at the root of the tree), then
it loops on the three stumps to be defined in an MT-stump,
loops on the possible features and loops on the possible values
for each attribute. Let us denote by a the number of features
and by v the maximal number of values, then the number
of tests is av, the number of stumps for one task is at most
2av, the number of MT-stumps with a fixed order on the two
tasks is at most (2av)3, and last the number of MT-stumps
is at most 2(2av)3. Let us note that all MT-stumps can be
produced only one time before boosting, and then, at each
boosting step, Exhaustive-MTS-Learner only evaluates
each MT-stump w.r.t. the current distribution.

When Exhaustive-MTS-Learner does not apply be-
cause the number of the MT-stumps is too large for
the algorithm to be efficient, we use randomization. We



generate at random n MT-stumps and keep the hy-
pothesis with the lowest error. This algorithm is called
Stochastic-MTS-Learner. The random generation pro-
cess of MT-stumps is defined as follows. We first pick up
randomly a task, then based on a randomly chosen feature
we construct a stump for this task which is the first level
in the MT-Stump, see Figure 2. For the second level, we
sample a task, then two random stumps are sampled for
this task, one will be placed under the first decision leaf
of the first level stump and the second under the second
leaf, and so on for the other levels. It can be proved that
Stochastic-MTS-Learner generates with high probabil-
ity an MT-stump with error inferior to 1

2 . Indeed, we proved
that if an MT-stump has an error ε, its dual has the error
1 − ε. Therefore, half of the MT-stumps have an error lower
than 0.5. Consequently, we fail to obtain a weak hypothesis
among n randomly produced MT-stumps with probability less
than ( 12 )

n. Thus Stochastic-MTS-Learner outputs an
MT-stump which is a weak classifier with high probability.
Also Stochastic-MTS-Learner can be modified such
that, if no weak classifier is found among the n MT-stumps,
the generation process continues until a weak MT-stump is
produced.

Many optimization techniques coming from decision tree
induction are possible but will not be discussed in this paper.

III. EXPERIMENTS

In the following, we describe in detail the datasets, the
preprocessing applied on them before reporting our exper-
imental comparisons between MT-Adaboost and two single
task learning methods SVM and Adaboost with Stumps.

A. Datasets

Our approach has been validated on one synthetic dataset
and two real datasets. The synthetic one is a mixture of 2D
multivariate Gaussians. It has two binary tasks T1 and T21:
• T1: composed of four Gaussians two for each class, each

Gaussian has 50 examples.
• T2: composed of one Gaussian per class, each Gaussian

has 1000 examples.
As shown in Figure 1, T1 is not linearly separable, whereas
T2 is. A percentage of 1% of noise is introduced for T1 and
5% for T2.

Second, we consider two large scale textual datasets namely
Enron and Tobacco. They are used for the TREC (Text RE-
trieval Conference) legal track challenge2. Lawsuits involving
companies and/or individuals have huge collections of docu-
ments varying from hard copy official documents to emails.
A group of lawyers are engaged to mine those collections
of millions of documents in order to decide which ones are
responsive for a certain lawsuit. Case mining is costly, time
consuming and critical since a single document might have an
impact on the lawsuit. This kind of legal document collections

1Figure 1 shows a simplified example of this dataset.
2http://trec-legal.umiacs.umd.edu/

is not easily available and even if they were, they would
require considerable annotation efforts due to their huge size.
To the best of our knowledge two real datasets of this kind
are available: Enron and Tobacco, they have been used in the
TREC legal track challenge for the last five years.

Enron dataset 3 contains all e-mails sent and received by
some 150 accounts of the top management of Enron and span-
ning a period of several years, the total number of messages
is about 250,000. Almost no censorship has been applied to
the contents, resulting in a vast variety of subjects ranging
from business related topics to strictly personal messages. It
is no wonder that the Enron Corpus opened up completely
new possibilities to the research [10], [11] and [12].

Tobacco dataset is based on documents released under the
tobacco Master Settlement Agreement” (MSA). The MSA
settled a range of lawsuits by the Attorneys General of several
US states against seven US tobacco organizations (five tobacco
companies and two research institutes). The University of Cal-
ifornia San Francisco (UCSF) Library, with support from the
American Legacy Foundation, has created a permanent repos-
itory, the Legacy Tobacco Documents Library (LTDL), for
tobacco documents [10]. The collection is based on a snapshot,
generated between November 2005 and January 2006, of the
MSA sub-collection of the LTDL. After reformatting OCR and
metadata; and filtering documents with formatting problems;
the collection consists of 6,910,192 document records in the
form of XML elements [13].

B. Preprocessing

Enron: Annotations of the Enron dataset come from two
different sources. The first is from the Department Of Justice
of the United States DOJ 4, which has published a list of
responsive emails used in the trials against the two CEO’s
of Enron. This set along with a manually annotated non-
responsive emails constitute a binary classification task, Re-
sponsive Vs. Non-responsive, with total of 372 emails. The
second annotated set comes from students of Berkeley Univer-
sity. Emails in this set are annotated by topic, for an average of
250 emails per topic. Five topics are used inn our experiments:
Business, Legal, Influence, Arrangement and Personal. Since
the two sets are small, and they share a common knowledge
(ex. a personal email is not likely to be a responsive email),
so learning them simultaneously would be advantageous. It
should be noted, that those two sets are disjoint, i.e., there are
no examples provided with both annotations. Since the task of
discovering responsive documents is of interest for litigation
applications, we consider it always in the experiments and we
try to learn it with another task that comes from the topic
annotated set: Legal Vs. Personal, Business Vs. Arrangement
and Influence Vs. Personal.

Enron documents are multi-modal, they have textual in-
formation and social implicit information come from the
underlying social network which is composed users connected

3http://www.cs.cmu.edu/∼enron/
4http://www.usdoj.gov/enron/



through their emails communications. Textual features we use
are 2200, each of which represents a cluster of semantically
similar words, e.g., trip, journey and travel. The value of such
a feature is the number of occurrences words of its cluster
occurred in a given document.

In addition to textual features, we extract a set of commonly
used features to represent key properties of actors (for more
details please see [14]). To translate the properties of actors
to properties of e-mails, set of 37 features is constructed to
represent each message. A message is represented by three
sets of 12 features, the first is the properties of the sender,
the second is the average of the properties of all receivers and
the third is the properties of the most prominent receiver (i.e.
with the highest social score). The last feature is the number
of receivers.

Tobacco: Each document is annotated by multiple labels.
In total there are 70 possible labels with an average of
10.000 documents per label. To construct multi-task setting
from multi-label, we chose 4 labels and construct from their
documents two binary tasks:
• Task1: Smoking and lung cancer Vs. Marketing strategy.
• Task2: Nicotine and addiction Vs. Advertisements.
It should be noted that each chosen document has one and

only one of the four labels, i.e., there is no intersection between
tasks’ documents. For Tobacco, each document is represented
by bag-of-words features. We have 40200 distinct words in the
chosen collection, for each word there is a feature which has
value 1 if the word exists in the document and 0 otherwise.

C. Algorithms and settings

For our algorithm, we define init(S), where S = S1∪S2,
as the distribution D1 such that, for each e ∈ S, D1(e) =

1
4.|Sk

i |
where Ski contains examples of class (k) in task Ti.

This corresponds to sampling with probability 1
2 one of the

two tasks Ti, then sampling with probability 1
2 one of the two

classes (k) of the selected task and finally sampling uniformly
at random in the set Ski .
Stochastic-MTS-Learner is used in all the experi-

ments as the weak learner for MT-Adaboost, with n = 1000
(n is the number of randomly sampled MT-stumps at each step
of boosting).

To evaluate the performance of MT-Adaboost we compare
it with two state of the art Single Task Learning methods,
Support Vector Machines SVM and Adaboost. To run SVM
we use LibLinear software5. Which is an SVM implementation
with linear kernel. Choosing linear kernel for our datasets was
not arbitrary, but it was motivated by a practice in the literature
to use them when dealing with large scale data sets where
we have already huge number of dimensions that makes the
data likely to be linearly separable without the need to project
it to higher dimensional spaces, that would complicate the
calculations, and does not bring a significance improvement.
Adaboost is used with decisions stumps as the weak learner
since they are the closest to our algorithm.

5http://www.csie.ntu.edu.tw/∼cjlin/liblinear/

Error rate StdDev
T1 SVM 9.698 1.06
T1 Adaboost 9.999 1.87
T1 MTAdaboost 2.299 0.44
T2 SVM 8.674 1.33
T2 Adaboost 8.193 1.39
T2 MTAdaboost 8.125 0.96

TABLE I
ERROR RATE RESULTS FOR THE TWO SYNTHETIC TASKS, T1 AND T2

Fig. 4. Test error curves for Adaboost and MT-Adaboost on two Enron tasks.

Both MT-Adaboost and Adaboost has only one parameter
to tune which is the number of boosting iterations T . By doing
Cross Validation on each pair dataset / algorithm, we chose the
value at which the error tends to be stable. For both algorithms
we chose, T = 25 for Gaussian data, T = 300 for Enron
and T = 150 for Tobacco. In the next section we will show
empirically that the test (generalization) error converges to a
minimum value with a small variance, after certain number
of iterations, which means that empirically the algorithm does
not overfit even when using large number of iterations. In [1]
similar behavior has been observed.

D. Results

We measure the error rate (percentage of misclassified
examples) and the standard deviation on the test set.

Gaussian data: As shown in Table I, MT-Adaboost outper-
forms Adaboost and SVM on both tasks with a significant
improvement on T1 which is more difficult than T2.

Enron: MT-Adaboost has got lower error rate than SVM
and Adaboost on Enron tasks. Results are shown in Tables II,
III, and IV In Figure 4 we show empirically that MT-Adaboost
reduces the test error more than Adaboost on both tasks, and as
Adaboost, MT-Adaboost’s error becomes stable after a certain
number of iterations, which means that it is also robust against
over-fitting.

Tobacco: Similarly, MT-Adaboost outperforms Adaboost



Error rate StdDev
T1 SVM 19.835 1.96
T1 Adaboost 18.059 0.87
T1 MTAdaboost 17.294 0.44
T2 SVM 18.66 1.21
T2 Adaboost 13.622 1.09
T2 MTAdaboost 8.757 1.46

TABLE II
TWO ENRON TASKS. T1 : LEGAL VS PERSONAL, T2 : RESPONSIVE VS

NON RESPONSIVE

Error rate StdDev
T1 SVM 28.644 0.86
T1 Adaboost 27.556 0.83
T1 MTAdaboost 24.183 1.26
T2 SVM 18.66 1.21
T2 Adaboost 13.622 1.09
T2 MTAdaboost 8.108 0.54

TABLE III
TWO ENRON TASKS. T1 : BUSINESS VS ARRANGEMENT , T2 :

RESPONSIVE VS NON RESPONSIVE

and SVM for the first task of Tobacco, and gives comparable
error rate for the second task. Results shown in Table V.

IV. MULTI-TASK LEARNING

We now discuss the multi-task case with over 2 tasks. It
should be noted that MT-stumps with n levels can not be
considered for complexity issues when n is large. Thus, we
consider MT-stumps with two levels as weak hypotheses. Such
a two level MT-stump abstains for tasks not appearing in
the MT-stump. Consequently, we have considered the original
Adaboost algorithm for weak hypotheses that abstain proposed

Error rate StdDev
T1 SVM 16.644 0.86
T1 Adaboost 14.143 1.15
T1 MTAdaboost 13.429 1.03
T2 SVM 18.66 1.21
T2 Adaboost 13.838 0.7
T2 MTAdaboost 8.649 1.25

TABLE IV
TWO ENRON TASKS. T1 : INFLUENCE VS PERSONAL , T2 : RESPONSIVE VS

NON RESPONSIVE

Error rate StdDev
T1 SVM 14.6 0.5
T1 Adaboost 13.45 0.05
T1 MTAdaboost 12.45 0.05
T2 SVM 15.85 0.15
T2 Adaboost 15.92 0.55
T2 MTAdaboost 15.95 0.45

TABLE V
TWO TOBACCO TASKS. T1 : SMOKING AND LUNG CANCER VS.
MARKETING STRATEGY T2 : NICOTINE AND ADDICTION VS.

ADVERTISEMENTS

by Freund and Schapire in [15]. We have defined a weak
learner searching for a MT-stump level by level. While prelim-
inary experiments are very promising, further investigations
are required. Indeed, a more thorough theoretical study of
MT-AdaBoost with hypotheses that abstain is needed. This is
because different choices for updating weights are possible
depending on how the error for hypotheses that abstain is
defined. Also, we have to prove that our weak learner can
find an hypothesis with an error rate lower than 0.5. Last, we
must design more experiments.
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