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Abstract. We address the problem of multi-task learning with no label correspondence
among tasks. Learning multiple related tasks simultaneously, by exploiting their shared
knowledge can improve the predictive performance on every task. We develop the multi-
task Adaboost environment with Multi-Task Decision Trees as weak classifiers. We first
adapt the well known decision tree learning to the multi-task setting. We revise the infor-
mation gain rule for learning decision trees in the multi-task setting. We use this feature
to develop a novel criterion for learning Multi-Task Decision Trees. The criterion guides
the tree construction by learning the decision rules from data of different tasks, and rep-
resenting different degrees of task relatedness. We then modify MT-Adaboost to combine
Multi-task Decision Trees as weak learners. We experimentally validate the advantage
of the new technique; we report results of experiments conducted on several multi-task
datasets, including the Enron email set and Spam Filtering collection.
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1 Introduction

Multi-task learning [3] aims at improving the performance of related tasks by
learning a model representing the common knowledge across the tasks. Tradition-
ally, the existing techniques assume that tasks share the same instance and label
space [14], in the case of classification [6, 18], regression [5, 1], ranking [4] and
feature learning [2].

However, in many natural settings these assumptions are not satisfied. A known
example is the automatic categorization of Web pages into hierarchical directories,
like DMOZ or Yahoo! [12]. When building a categorizer for the Yahoo! directory,
it is desirable to take into account DMOZ web directory, and vice versa. The two
tasks are clearly related, but their label sets are not identical. Moreover, both
ontologies can evolve with time when new categories are added to the directories
and some old categories die naturally due to lack of interest.

Multi-task learning with no label correspondence was considered in Quadrianto
et al. in [15], where the problem is formulated as learning the maximum entropy es-
timatorH(Y |X) for each task while maximizing the mutual information−H(Y, Y ′)
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among the label sets Y and Y ′ of different tasks. Their approach relies on the hy-
pothesis of the global correlation between tasks in the whole learning space. Tests
on the real world datasets show however that this global relatedness assumption
turns to be too strong. Indeed, task relatedness may show up different degrees or
even different signs in different regions of the learning space. It is therefore impor-
tant that the multi-task learner copes with the varying relatedness of tasks, learns
its different degrees and accommodates the inductive bias accordingly.

We are interested in the multi-task learning where label sets are close but differ
from one task to another and the number of classes might be different across tasks.
Our motivating example is the automatic classification of e-mails in personal in-
boxes [13]. Similarly to the case of Yahoo! and DMOZ web directories, categories
used in two e-mail inboxes may be related but not identical. For example, people
may use Family or Home categories for personal e-mails and Finance or Budget for
e-mails relevant to financial issues. The application becomes particularly critical
when inboxes are owned by people from the same organization; they may share the
same messages but classify them according to personal category names. We there-
fore expect that learning all tasks simultaneously can benefit to the classification
model for each task.

In the previous work [7] we proposed a method for multi-task learning for tasks
with different label sets which makes no assumption on global relatedness. For this
purpose, we developed a multi-task learning algorithm (MT-Adaboost) which ex-
tends Adaptive boosting (Adaboost) [9] to the multi-task setting. The boosting
technique is used to generate and combine multiple (weak) classifiers to improve
the predictive accuracy. As weak classifiers, we introduced multi-task stumps which
are trees having at each node a decision stump for one task. According to the boost-
ing principle, a smart re-weighting of examples from different tasks without label
correspondences can grasp the local relatedness of tasks. The method however suf-
fers from some limitations. The greedy algorithm which learns a multi-task stump
level-by-level, is based on a heuristic choosing at the root the best stump for the
easiest task (where the training error is the lowest); then it forwards recursively to
the next levels to learn the remaining tasks. In this kind of a cascade classification
on tasks, it learns at each node a classifier for a task taking into account the other
tasks’ classifiers in the node’s ancestors. Unfortunately, such a sequential design
of multi-task stumps performs poorly when its greedy algorithm fails to capture
task relatedness. In addition, multi-task stumps are binary classifiers, and their
extension to multiple multi-class tasks requires additional efforts.

In this work, we propose a novel technique for the multi-task learning which
addresses the limitations of previous approaches. First, we propose Multi-Task
Decision Tree (MT-DT) as a multi-task weak classifier. We revisit the well known
C4.5 decision tree learning and adapt it to the multi-task setting. Decision trees
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are naturally multi-class classifiers, thus MT-DT can learn multiple multi-class clas-
sification tasks. Our main contribution is in proving that MT-DT can benefit from
an improved information gain criterion due to the multi-tasking. Unlike multi-task
stumps, the criterion used to learn the nodes makes use of the data from several
tasks at each node.

Second, we proceed by plugging the MT-DT in the boosting framework; we mod-
ify MT-Adaboost to cope with the multi-class problems accordingly. We follow the
work of Schapire et al. [17] which analyzed Adaboost with weak learners which ab-
stain and proposed several variations of Adaboost to carry on multi-class problems.
Our modification of MT-Adaboost adapts their Adaboost.M1 algorithm.

As the experimental study will show, our method does not have a uniform
margin of improvement over all the tasks. In other words, the tasks which have
lower prediction accuracy in single task learning they have a higher improvement
potential when learned by our multi-task algorithm.

In the following section we formalize the multi-task learning and introduce the
multi-task decision trees. We revisit the information gain rule for the multi-task
learning and derive a novel criterion for learning MT-DT. In Section 3 we present
the boosting framework for the multi-task with MT-DT as weak learners. We report
the evaluation results for synthetic and real world multi-task datasets in Section
4; Section 5 concludes the paper.

2 Multi-task learning

2.1 Notation and Setting

In the conventional setting, a supervised classification task T is defined over the
instance space X and the space Y of labels. Let D denote a distribution over
(X ,Y), let f : X → Y be a target function. Given a set of training examples
S = {(xi, yi) | xi ∈ X , yi = f(xi), 1 ≤ i ≤ m}, the goal of learning is to find
an hypothesis function h which minimizes an error function, defined over D as
error(h) = Pr<x,y>∼D[h(x) ̸= y].

We now consider N classification tasks T1, . . . , TN over the instance space X
and label sets Y1, . . . , YN , where labels in sets Yi are correlated but not identical.
Due to the label mismatch the label sets, we assume that Yi∩Yj = ∅ for i ̸= j. We
are interested in solving N classification tasks simultaneously, in order to improve
classification accuracy. We suppose a distribution DN over X × {1, . . . , N}. We
assume that, for every j ∈ {1, . . . , N}, the projection on the distribution’s j-th
component will correspond to the original distribution for task Tj. A multi-task
classification algorithm will take as input the training set S = {< xi, yi, j >|
xi ∈ X , yi = fj(xi) ∈ Yj, j ∈ {1, . . . , N}, 1 ≤ i ≤ m}. It should be noted
that the same instance x can appear in sample S in different tasks Ti and Tj
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with corresponding labels yi and yj. The goal is to find an hypothesis h : X →
Y1 × . . . × YN which minimizes error(h) = Pr<x,y,j>∼DN [hj(x) ̸= y], where hj(x)
is the j-th component of h(x) and j ∈ {1, . . . , N}.

2.2 Multi-Task Decision Tree

Decision tree learning is a well known technique in machine learning; it uses a
decision tree as a predictive model which maps observations from the instance
space to the target values. In the case of classification, tree leaves represent class
labels and branches represent conjunctions of item attributes that lead to those
class labels [16].

In the C4.5 and C5.0 tree generation algorithms, the decision tree learning uses
the concept of the information gain (IG) from the information theory. At the root
of the tree, the algorithm chooses an attribute that yields the highest IG on the
training set. Such an attribute splits the training set S into two subsets S1 and S2

whose sum of labels entropy is the lowest. The algorithm then recursively applies
the information gain rule on the subsets. The recursion is stopped when all items
of a subset have the same label, a decision leaf corresponding to this label 1.

The amount of information gain about a label variable Y ∈ Y obtained by ob-
serving that an attribute variable a takes value v can be measured by the Kullback-
Leibler divergence DKL(p(Y |a)||p(Y )) of the prior distribution p(Y ) from the pos-
terior distribution p(Y |a) for Y given a. The information gain rule estimates the
average improvement. Thus the decision tree algorithm uses the rule to recursively
split the instance space, by selecting an attribute with the high information gain.

In this paper we adapt the information gain based decision tree learning to the
multi-task setting. One obvious difference between one- and multi-task setting is
in the tree structure. One-task decision tree uses the internal test nodes to guide
the decision process while the final decision on assigning a label to a sample is
made in a tree leaf.

The structure of an multi-task decision tree (MT-DT) is different in the way it
guides the decision process for multiple tasks. This process is not necessarily the
same for all tasks. An MT-DT can make a final decision for some tasks in an internal
test node, not a tree leaf. This happens when the internal test node has enough
information to classify an instance of a certain task T , in such a case a decision
leaf with the appropriate classification decision for T is added to the tree and the
learning proceeds with the remaining tasks.

Figure 1.a gives an example of an MT-DT learned for two synthetic tasks gener-
ated from 2D mixture of Gaussians (see Figure 1.b). T1 has four labels (Y1 ={□, ⋄,
△, ◦}) and T2 has two labels (Y2 ={+,∗}). Two labels of T1 (□, ⋄) are correlated
with label + of T2, while two other labels of T1 (△, ◦) are correlated with label

1 Some pruning is often used to generalize the rules learned to unobserved items.
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∗ of T1. The generated MT-DT has three internal test nodes and each decision leaf
carries one rule per task.

Another example of MT-DT is showed in Figure 2. Task T1 is the same as Fig-
ure 1, while task T2 is generated differently from a mixture of Gaussians (see
Figure 2.b). This results in a different correlation pattern between the tasks. The
learned MT-DT has an early decision leaf for T2 since knowing that x1 > −2 is
enough to predict the label class ∗ for T2.

a)
b)

Fig. 1. a) MT-DT example for two tasks. b) Two 2D mixture of Gaussian tasks.

a)
b)

Fig. 2. a) MT-DT with early decision leaf. b) Two 2D mixture of Gaussian tasks.

When moving from one- to multi-task setting, the adaptation of the tree struc-
ture learning is straightforward. The main challenge is however in the optimal way
of using the information gain criteria. In the next section we show how MT-DT can
profit from the multi-task setting.
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2.3 Multi-task information gain

As said before the decision tree learning is based on the entropy-based criteria,
in particular, on the quantity of the mutual dependency between two random
variables, the label variable Y ∈ Y and the observation attribute a which is one of
the attributes of an input vector x ∈ X . The information gain denoted IG(Y ; a)
can be expressed as follows

IG(Y ; a) = H(Y )−H(Y |a), (1)

where H(Y ) = −
∑

y∈Y p(y)logp(y) is the marginal entropy of label set Y and
H(Y |a) =

∑
v p(v)H(Y |a = v) is the conditional entropy of Y knowing a.

Assume now we cope with N tasks with the corresponding label sets Y1, . . . ,
YN , respectively. For learning the MT-DT, the baseline approach is to treat all the
tasks together by concatenating the label sets, denoted as ⊕N

j=1Yj. The concate-
nated task takes as input a sample S = {< xi, yi >| xi ∈ X , yi = f(xi) ∈
⊕N

j=1Yj, 1 ≤ i ≤ m}. It can use the joint information gain for learning decision
rules, defined as IGJ = IG(⊕N

j=1Yj; a). As an alternative to IGJ , we could use

the unweighted sum of individual task information gains, IGU =
∑T

j=1 IG(Yj; a).
Evaluations however show that IGU gives lower information gain values comparing
to IGJ .

We will prove below that IGJ is equivalent to the weighted sum of individual
task information gains and infer an IG criterion with higher values compared to
IGJ . The novel IG criterion, denoted IGM , takes the maximum value among the
individual IGs, IGM = max{IG(Yj; a), j = 1, . . . , N}.

We first recall the generalized grouping feature of the entropy [10] in the fol-
lowing lemma. It establishes a relationship between the entropy of an entire set of
values and the entropies of its disjoint subsets.

Lemma 1. For qkj ≥ 0, such that
∑n

k=1

∑m
j=1 qkj = 1, pk =

∑m
j=1 qkj,∀k =

1, . . . , n, the following holds

H(q11, . . . , q1m, q21, . . . , q2m, . . . , qn1, . . . , qnm) = (2)

H(p1, . . . , pn) +
∑

pkH

(
qk1
pk

, . . . ,
qkm
pk

)
, pk > 0,∀k. (3)

Using Lemma 1, we can prove the following theorem on the relationship between
the joint information gain IG(⊕N

j=1Yj; a) of the full task set and of the individual
tasks IG(Yj; a), j = 1, . . . , N .

Theorem 1. For N tasks with the class sets Y1, . . . ,YN , let pj denote the fraction

of task j in the full dataset, pj =
|Sj |∑N
j=1 |Sj |

, j = 1, . . . , N ,
∑N

j=1 pj = 1. Then we
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have

IG(⊕N
j=1Yj; a) =

N∑
j=1

pjIG(Yj; a) ≤ max(IG(Y1; a), . . . , IG(YN ; a)). (4)

Proof. First, we use Lemma 1 to develop the entropy term H(⊕N
j=1Yj) of the

information gain (1). We have

H(⊕N
j=1Yj) = H(p1, . . . , pN) +

N∑
j=1

pjH(Yj), (5)

where
∑N

j=1 pj = 1.
Second, we develop the conditional entropy term in (1), as follows

H(⊕N
j=1Yj|X) =

∑
x

p(x)H(⊕N
j=1Yj|a = v) (6)

=
∑
v

p(v)

(
H(p1, . . . , pN) +

N∑
j=1

pjH(Yj|a = v)

)
(7)

=H(p1, . . . , pN) +
N∑
j=1

pjH(Yj|a). (8)

Now we combine the entropy (5) and the conditional entropy (8) terms to
evaluate the joint information gain IG(⊕N

j=1Yj; a). We obtain

IG(⊕N
j=1Yj; a) =H(⊕N

j=1Yj)−H(⊕N
j=1Yj|a) (9)

=
N∑
j=1

pjIG(Yj; a) (10)

≤max(IG(Y1; a), . . . , IG(YN ; a)). (11)

This completes the proof of the theorem.
Theorem 1 says that criterion IGM for the decision tree learning in the multi-

task case gives larger information gain values comparing to the joint one IGJ .
Figure 2.3 compares three criteria IGU , IGJ and IGM for some randomly

generated two-task datasets. Two label sets are generated by sampling from the
Uniform, Normal (with µ = 0, σ = 1) and Poisson (λ = 1) distributions; the
number of labels in the two sets vary from 2 to 20. Attributes values are sampled
from uniform distributions in all cases. We measure the relative values of IGM
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Fig. 3. Information gain for synthetic two-task datasets. The relative values of IGM (in blue) and IGU

(in red).

and IGU with respect to IGJ . In all cases, we report the median, the upper and
lower percentiles, and the whiskers over 100 runs. As the figure shows, IGM yields
on average up to 42% larger information gain values than IGJ , with the minimal
gain in the case of two Uniform distributions.

As we can notice from the plots, the variance of IGM values is very high
compared to this of IGU which have almost zero variance. An information gain
criterion with small variance is not a good indicator to help choosing a good node
because all node will have very close IG values. The explanation of such small
variance is that when we take the sum of IGs for all tasks, it is difficult to come
out with a node that satisfies all of them.

2.4 Learning Algorithm for MT-DT

The learning algorithm for MT-DT applies one of proposed information gain criteria
to the available training set S:

MTIG(S) ≡ (a∗, v∗) = maxa∈X ,v∈VaIG∗(S),

where a is an attribute in feature space X , S is the training set, a takes one of
the possible values v ∈ Va and a pair (a∗,v∗) yields the optimal split on S using as
criterion IG∗ which can refer to IGJ , IGU or IGM .

The pseudo code of the MT-DT algorithm is presented in Algorithm 1. The
algorithm makes a call to a functionMTIG which returns the node with rule a ≤ v
that maximizes a given information gain on a multi-task training set S, Then it
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gets subsets S1, S2 resulting from splitting S on the chosen node. At each node
the algorithm adds decision leaves for the tasks having no items in the subset or
having items with the same label. Then, it calls recursively the procedure on each
of subsets. The learning algorithm returns at the end a tree that gives for each
example (x) one label for each task.

In the evaluation section, we test three versions of the IG criterion introduced
before, IGJ , IGU and IGM . It is worth noting that we can limit the depth of
the trees by modifying the stopping criterion, instead of stopping the growth of a
certain branch when we have homogenous labels for all tasks in the subspace cor-
responding to that branch, we can stop when we exceed a threshold. For instance,
when 80% of the examples are from the same labels. This should not be an issue
as long as we are using an ensemble of trees learned by a boosting algorithm.

Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X ; yi ∈ Yj}

Require: MTIG: multi-task information gain criterion
1: res = [] {Will contain the chosen node and early decision leaves, if any}
2: for j = 1 to N do
3: if task j’s examples (Sj) has all the same label or Sj = ∅ then
4: Add to res a leaf for task j and label y. {y is either the unique label of Sj in case it is

homogeneous or it is the majority label of its parent subset in case Sj = ∅}
5: S = S \ Sj

6: end if
7: end for
8: Get the bestnode rule (a, v) = MTIG(S) which maximizes the information gain
9: Call split(S, a, v))
10: Get back [S1, S2], two subsets resulted from splitting S based on bestnode

11: Add bestnode to res

12: Call recursively the algorithm on S1 and S2 to get the children of res
13: return res

Algorithm 1: MT-DT algorithm.

3 Multi-Task Adaboost

In the previous section we developed a novel technique for learning MT-DT’s with
an improved information gain criterion. To avoid all disadvantages of the decision
trees such as overfitting, in this section we proceed by plugging the MT-DT’s in the
boosting framework.

We adapt Adaboost.M1 which was introduced in [9]. We preferred M1 to MH or
other multi-class boosting algorithm because it requires a weak classifier which is
naturally multi-class. It does not need a weak learner which transforms a problem
to several binary problems, and since, we propose a multi-task learner based on
decision trees that are naturally multi-class classifiers, Adaboost.M1 is a good
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candidate. In addition to that, it is the most straightforward multi-class extention
of Adaboost. Nevertheless, it puts strong requirement on the weak learner; actually,
it requires the classification error of the weak classifier to be less than 0.5 w.r.t. to
the current weight distribution, regardless the number of class labels. Some weak
learners, such as stumps, are unable to satisfy such a strong boosting condition.
But, normally, decision trees can satisfy this condition.

The proposed Multi-Task Adaboost algorithm (MT-Adaboost) is presented in
Algorithm 2. T is the number of boosting iterations; init is a procedure to ini-
tialize the distribution D1 over S; and WL is a weak learner that returns an MT-DT

given as input a sample S and a distribution D over S. The final output is a multi-
task classifier H from X into Y1× . . .×YN . As in single task boosting algorithms,
MT-Adaboost calls WL repeatedly in a series of rounds. On each round t, the algo-
rithm provides WL with the current distribution Dt and the training sample S, in
return WL learns a classifier ht : X → Y1 × . . .× YN which minimizes the training
error on S with respect to Dt. The distribution Dt+1 is then calculated from Dt and
ht as follows. Correctly classified examples by ht will have their weights multiplied
by 0 ≤ βt ≤ 1 (i.e., decreased), and the weights of misclassified examples will be
left unchanged. Finally, the weights are renormalized by using the normalization
constant Zt.

The final classifier H for a given task j is a weighted vote of the weak classifiers’
predictions for this task. The weight given to hypothesis ht is defined to be ln(1/βt)
so that greater weight is given to hypotheses with lower error. MT-Adaboost has the
same theoretical properties of Adaboost.M1, that is, if the weak hypotheses have
error only slightly better than 1/2, then the (training) error of the final hypothesis
H drops to zero exponentially fast in function to the number of boosting iterations
T .

4 Experiments

In this section we present a series of experiments on three datasets. We describe the
datasets and evaluation framework, then we compare the predictive performance
of single task decision trees to different MT-DTs learned using IGJ , IGU and IGM

criteria. Then we report experimental results on boosted trees using MT-Adaboost.

4.1 Datasets

Synthetic We generate synthetically tasks with local relatedness patterns, by
following the data generation technique described in [8]. Each pattern is generated
a random Bayesian network (BN) from which one can derive different but related
probabilistic distributions. The BN is created by generating (a) a random (directed
acyclic) graph, (b) a set of functions (with random parameters) characterizing the
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Require: S = ∪N
j=1{ei =< xi, yi, j >| xi ∈ X ; yi ∈ Yj}

1: D1 = init(S) initialize distribution
2: for t = 1 to T do
3: ht = WL(S,Dt) {train the weak learner and get an hypothesis MT-DT }
4: Calculate the error of ht: ϵt =

∑N
j=1

∑
i:ht

j(xi )̸=yi
Dj(xi).

5: if ϵt > 1/2 then
6: Set T = t− 1 and abort loop.
7: end if
8: βt =

ϵt
1−ϵt

{Update distribution:}
9: if ht

j(xi) == yi then

10: Dt+1(ei) =
Dt(ei)×βt

Zt

11: else
12: Dt+1(ei) =

Dt(ei)
Zt

13: end if
14: end for

{Where Zt is a normalization constant chosen so that Dt+1 is a distribution}
15: return Classifier H defined by:

Hj(x) = argmax
y∈Yj

(

i=T∑
i=1

(ln 1/βt)), 1 ≤ j ≤ N

Algorithm 2: MT-Adaboost.

dependence of every node on each one of its parents in the graph, and (c) a set of
functions (with randomly assigned parameters) defining the probability density of
each node 2.

Figure 4 shows some examples of the local tasks relatedness generated using
such method. In the plotted examples, the distributions feature cubic, exponen-
tial and linear correlation functions, with Beta, Gaussian and Laplacian densi-
ties. Using the random relatedness generator we generate three multi-task learning
datasets. DS1 consists of two tasks T1 and T2, having three and two labels, respec-
tively. They are plotted in Figure 5.a. We can see that the red class of T1 is locally
correlated with the light blue class of T2; similarly, the green class is locally corre-
lated with the violet. However the dark blue class of T1 which is locally correlated
with the violet in the upper part of its density and with the light blue in the lower
part. The second dataset DS2 is shown in Figure reffig:mtsynthetic.b with tasks
being also locally correlated. Finally, random noise is added to the labels of all
tasks as follows. For a certain example with label y we place a discrete probability
distribution over the label set with 90% of mass concentrated over y and the rest
distributed equally over the other labels. Then we sample the noisy label from this
distribution. It should be noted that we generate tasks with different number of

2 The code is provided by Antonino Freno http://researchers.lille.inria.fr/~freno/software.

html
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class labels on purpose, in order to test the proposed methods on configurations
not addressed by prior-art methods.

(a) A correlation pattern from
beta-quadratic distributions

(b) A correlation pattern from
gaussian-cubic distributions

(c) A correlation pattern from
gaussian-exponential distribu-
tions

(d) A correlation pattern from
gaussian-quadratic distribu-
tions

Fig. 4. Tasks Relatedness Patterns for synthetic 2D data

Enron Enron dataset3 contains all e-mails sent and received by some 150 ac-
counts of the top management of Enron company and spans a period of several
years. Annotations of the Enron dataset come from two different sources, thus,
naturally constituting two tasks. The first is from the Department Of Justice of
the United States DOJ4, which has published a list of responsive emails used in
the trials against the two CEO’s of Enron. This set along with a manually anno-
tated non-responsive emails constitute a binary classification task, Responsive Vs.
Non-responsive, with total of 372 emails. The second annotated set comes from
students of Berkeley University. Emails in this set are annotated by topic, for an
average of 250 emails per topic. Five topics are used in our experiments: Busi-
ness, Legal, Influence, Arrangement and Personal. We used the textual features of
Enron dataset along with the social features (see [11] for more details).

3 http://www.cs.cmu.edu/~enron/.
4 http://www.usdoj.gov/enron/.
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(a) Two related multi-class tasks (b) Two related multi-class tasks

Fig. 5. Two classification problems, each with two multi-class tasks.

Spam Filtering This dataset was used for the ECML/PKDD 2006 discovery
challenge. It contains email inboxes of 15 users. Each inbox has 400 spam/ham
emails. They are encoded by standard bag-of-word vector representation. We con-
sider each user as a task.

MNIST Character Recognition We use this dataset adapted to the multi-task
setting because it was used by a state-of-the-art method [15], so we can and we can
compare with their results. For the experiments, we consider multi-task learning
problems with 10 tasks representing the digits {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}. We follow
the same protocol given in [15] so we can be able to have a good comparison.

4.2 Results on Trees

In this section we report experimental results of MT-DTs learned using IGJ , IGU

and IGM criteria introduced in Section 2.3. We also compare MT-DT to single
task decision trees learned with C4.5 algorithm. In all experiments we use the 5-
fold cross validation, where each run consists of training on four folds and testing
on the remaining one. We run all methods fifty times on random shuffles of the
data and report the average values. Results in bold are statistically significant by
a t-test with α = 0.05.

Table 1 reports the size of training/test sets and the evaluation results for
three synthetic datasets. We note that MT-DT with IGM brings a significant
improvement over C4.5. While IGJ and IGU behave comparably to C4.5, they are
slightly better on Task-1, but suffer an accuracy drop on Task-2.

The same behavior is observed on ECML’06 data (see Table 2). It shows a su-
periority of IGM over other MT-DT criteria in accuracy values. However, learning
tasks simultaneously does not bring the same improvement to all tasks, some tasks
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Tasks Train (Test) C4.5 IGJ IGU IGM

Data Set 1
Task-1 300 (1200) 86.432± 0.003 86.116± 0.063 86.070± 0.029 87.180± 0.037
Task-2 200 (1300) 89.532± 0.167 88.980± 0.391 89.237± 0.445 89.246± 0.341
Avg 87.982 87.548 87.653 88.213

Data Set 2
Task-1 200 (1300) 90.738± 0.092 88.008± 0.606 89.848± 0.063 90.751± 0.085
Task-2 300 (1200) 83.525± 0.600 88.056± 1.363 88.221± 1.316 88.366± 0.366
Avg 87.132 88.032 89.035 89.559

Table 1. Average classification accuracy on the three synthetic datasets

tend to benefit more from multi-task learning than others. Results show that more
difficult tasks (tasks with a lower accuracy) got a higher improvement on their
prediction accuracy when learned by other tasks.

Tasks Train (Test) C4.5 IGJ IGU IGM

User-1 320 (80) 86.45± 1.23 86.19± 1.14 86.00± 1.88 87.65±3.42

User-2 320 (80) 85.13± 2.16 85.53± 2.22 85.07± 3.16 88.93±3.44

User-3 320 (80) 88.03± 2.11 88.22± 2.56 88.52±1.33 88.19± 2.51

Avg 86.54 86.65 86.53 88.26

Table 2. Average classification accuracy on three ECML’06 user inboxes.

4.3 Results on Boosted Trees

In the previous section we experimentally validated the advantage of learning re-
lated tasks simultaneously, by using multi-task information gain criteria, in partic-
ular IGM . In this section we compare boosted MT-DT’s to the boosted C4.5 trees.
We use Adaboost.M1 [17] and MT-Adaboost (see algorithm 2) as boosters for C4.5
and for MT-DT respectively. Both algorithms have only one parameter, the number
of boosting iterations which we set on a separated validation set.

Table 3 reports our comparison with the work in [15], we can see that our
multi-task algorithm significantly outperform Adaboost with trees for single task
learning and it proves a large margin of improvement over the method in [15],
despite that we exactly follow their protocol.

Table 4 reports the average values of classification accuracy over three random
runs for Enron dataset. With boosted trees we observe an accuracy improvement
similar to simple trees. Namely, MT-Adaboost+MT-DT is significantly better than
Adaboost+C4.5; also the most difficult tasks enjoy a larger margin of improvement.
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Tasks Train (Test) Adaboost MTL [15] MT-Adaboost

1/-1 100 (10000) 91.770± 1.188 96.80± 1.91 96.802± 0.562
2/-2 100 (10000) 83.138± 2.347 69.95± 2.68 86.875± 0.676
3/-3 100 (10000) 82.959± 1.245 74.18± 5.54 87.679± 1.038
4/-4 100 (10000) 83.975± 1.408 71.76± 5.47 90.382± 0.713
5/-5 100 (10000) 78.423± 0.691 57.26± 2.72 84.253± 0.731
6/-6 100 (10000) 88.954± 1.601 80.54± 4.53 92.880± 0.896
7/-7 100 (10000) 87.105± 0.904 77.18± 9.43 92.811± 0.575
8/-8 100 (10000) 77.513± 1.905 65.85± 2.50 85.279± 1.727
9/-9 100 (10000) 81.842± 1.850 65.38± 6.09 86.904± 1.258
0/-0 300 (10000) 93.660± 1.287 97.81± 1.01 97.137± 0.418

Average - 84.934 75.67 90.100
Table 3. Comparison on the MNIST datasets of (single-task) Adaboost, MTL and MT-Adaboost.

Tasks Train (Test) Adaboost MT-Adaboost MT-Adaboost MT-Adaboost
C4.5 IGJ IGU IGM

Responsive Vs. 299 (74) 85.10± 1.21 84.66± 2.15 84.52± 1.2 86.01±1.53
NonResponsive

5 Topics 265 (66) 51.34± 0.43 52.89± 0.87 52.17± 0.74 57.11±0.02

Avg 68.22 68.78 68.35 71.65

Table 4. Average classification accuracy of boosted trees on Enron tasks.

5 Conclusion

We proposed an adaptation of decision tree learning to the multi-task setting, with
the following important contributions. First, we developed multi-task decision trees
to deal with multi-class tasks with no label correspondence. The criterion to learn
the decision rules makes use of the data from several tasks at each step of the
decision tree learning, thus enabling to capture any degree of relatedness between
the tasks. We then feature an important property of information gain rule when
working with multiple tasks. This enabled us derive the new information gain
criterion for learning decision trees in the multi-task setting. We also modified
MT-Adaboost to cope with multi-class problems. We finally validated the proposed
methods by series of experiments on three cases of multi-task learning.
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