Bibliographie

 

 

Méthodes d’apprentissage

Modèles de prédiction du risque cardio-vasculaire

Validation et évaluation de modèles

Publication du groupe projet sur les données INDANA

 

Méthodes d’apprentissage


Goodman P and Harrell Fj, NevProp Manual with Introduction to Artificial Neural Network Theory, http://www.unr.nevada.edu/~goodman/nevprop/ or http://brain.unr.edu/FILES_PHP/show_papers.php, (last access on february 2002).

Goodman PH and Rosen DB, NevProp software, version 4r1., http://www.unr.nevada.edu/~goodman/nevprop/ or http://brain.unr.edu/FILES_PHP/show_papers.php, (last access on february 2002).

 

 

Modèles prédiction du risque cardio-vasculaire

 

Anderson KM, Odell PM, Wilson PW, and Kannel WB, Cardiovascular disease risk profiles. Am Heart J, 1991. 121(1 Pt 2):293-8.

Anderson KM, Wilson PW, Odell PM, and Kannel WB, An updated coronary risk profile. A statement for health professionals. Circulation, 1991. 83(1):356-62.

Baker S, Priest P, and Jackson R, Using thresholds based on risk of cardiovascular disease to target treatment for hypertension: modelling events averted and number treated. BMJ, 2000. 320(7236):680-5.

Baxt WG, Application of artificial neural networks to clinical medicine. Lancet, 1995. 346(8983):1135-8.

Baxt WG and Skora J, Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet, 1996. 347(8993):12-5.

D'Agostino RB, Sr., Grundy S, Sullivan LM, and Wilson P, Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA, 2001. 286(2):180-7.

D'Agostino RB, Russell MW, Huse DM, et al., Primary and subsequent coronary risk appraisal: new results from the framingham study. Am Heart J, 2000. 139(2 Pt 1):272-81.

D'Agostino RB, Wolf PA, Belanger AJ, and Kannel WB, Stroke risk profile: adjustment for antihypertensive medication. The Framingham Study. Stroke, 1994. 25(1):40-3.

Kennedy RL, Harrison RF, Burton AM, et al., An artificial neural network system for diagnosis of acute myocardial infarction (AMI) in the accident and emergency department: evaluation and comparison with serum myoglobin measurements. Comput Methods Programs Biomed, 1997. 52(2):93-103.

Knuiman MW, Vu HT, and Segal MR, An empirical comparison of multivariable methods for estimating risk of death from coronary heart disease. J Cardiovasc Risk, 1997. 4(2):127-34.

Kubat M, Holte R, and Matwin S. Learning when negative examples abound. in European Conference Machine Learning (ECML). 1997.

Lapuerta P, Azen PS, and LaBree L, Use of neural networks in predicting the risk of coronary artery disease. Comp Biomed Res., 1995. 28:38-52.

Lapuerta P, L'Italien GJ, Paul S, et al., Neural network assessment of perioperative cardiac risk in vascular surgery patients. Med Decis Making, 1998. 18(1):70-5.

Pocock SJ, McCormack V, Gueyffier F, et al., A score for predicting risk of death from cardiovascular disease in adults with raised blood pressure, based on individual patient data from randomised controlled trials. BMJ, 2001. 323(7304):75-81.

Segal MR and Bloch DA, A comparison of estimated proportional hazards models and regression trees. Stat Med, 1989. 8(5):539-50.

Selker HP, Griffith JL, Patil S, Long WJ, and D'Agostino RB, A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med, 1995. 43(5):468-76.

Silver DL and Hurwitz GA, The predictive and explanatory power of inductive decision trees: a comparison with artificial neural network learning as applied to the noninvasive diagnosis of coronary artery disease. J Investig Med, 1997. 45(2):99-108.

Tu JV, Weinstein MC, McNeil BJ, Naylor D, et al. Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn ? Med Decis Making, 1998. 18:229-35.

 

 

Validation et évaluation de modèles

 

Concato J, Feinstein AR, and Holford TR, The risk of determining risk with multivariable models. Ann Intern Med, 1993. 118(3):201-10.
Diamond GA, What price perfection? Calibration and discrimination of clinical prediction models.
J Clin Epidemiol, 1992. 45(1):85-9.

Hanley JA and McNeil BJ, The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 1982. 143(1):29-36.

Hanley JA and McNeil BJ, A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 1983. 148(3):839-43.

Harrell FE, Jr., Lee KL, and Mark DB, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med, 1996. 15(4):361-87.

Heckerling PS, Conant RC, Tape TG, and Wigton RS, Discrimination and reproducibility of an information maximizing multivariable model. Methods Inf Med, 1993. 32(2):131-6.

Justice AC, Covinsky KE, and Berlin JA, Assessing the generalizability of prognostic information. Ann Intern Med, 1999. 130(6):515-24.

Laupacis A, Sekar N, and Stiell IG, Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA, 1997. 277(6):488-94.

Leaverton PE, Sorlie PD, Kleinman JC, et al., Representativeness of the Framingham risk model for coronary heart disease mortality: a comparison with a national cohort study. J Chronic Dis, 1987. 40(8):775-84.

McGinn TG, Guyatt GH, Wyer PC, et al., Users' guides to the medical literature: XXII: how to use articles about clinical decision rules. Evidence-Based Medicine Working Group. Jama, 2000. 284(1):79-84.

Raubertas RF, Rodewald LE, Humiston SG, and Szilagyi PG, ROC curves for classification trees. Med Decis Making, 1994. 14(2):169-74.

Wald NJ, Hackshaw AK, and Frost CD, When can a risk factor be used as a worthwhile screening test? BMJ, 1999. 319(7224):1562-1565. (télécharger)

Zaragoza H and D'Alché-Buc F. Confidence measure for neural network classifiers. in IPMU'98. 1998. Paris.



 

 

Publication du groupe projet sur les données INDANA

 

Colombet I, Ruelland A, Chatellier G, et al., Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. Proc AMIA Symp, 2000:156-60.

Gueyffier F, Boutitie F, Boissel JP, et al., INDANA: a meta-analysis on individual patient data in hypertension. Protocol and preliminary results. Therapie, 1995. 50(4):353-62.

Gueyffier F, Boutitie F, Boissel JP, et al., Effect of antihypertensive drug treatment on cardiovascular outcomes in women and men. A meta-analysis of individual patient data from randomized, controlled trials. The INDANA Investigators. Ann Intern Med, 1997. 126(10):761-7.